3.162 \(\int \cot (c+d x) (a+a \sec (c+d x))^{5/2} \, dx\)

Optimal. Leaf size=95 \[ \frac {2 a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {a}}\right )}{d}-\frac {4 \sqrt {2} a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {2} \sqrt {a}}\right )}{d}+\frac {2 a^2 \sqrt {a \sec (c+d x)+a}}{d} \]

[Out]

2*a^(5/2)*arctanh((a+a*sec(d*x+c))^(1/2)/a^(1/2))/d-4*a^(5/2)*arctanh(1/2*(a+a*sec(d*x+c))^(1/2)*2^(1/2)/a^(1/
2))*2^(1/2)/d+2*a^2*(a+a*sec(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {3880, 84, 156, 63, 207} \[ \frac {2 a^2 \sqrt {a \sec (c+d x)+a}}{d}+\frac {2 a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {a}}\right )}{d}-\frac {4 \sqrt {2} a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {2} \sqrt {a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(2*a^(5/2)*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/d - (4*Sqrt[2]*a^(5/2)*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/
(Sqrt[2]*Sqrt[a])])/d + (2*a^2*Sqrt[a + a*Sec[c + d*x]])/d

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 84

Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Simp[(f*(e + f*x)^(p -
 1))/(b*d*(p - 1)), x] + Dist[1/(b*d), Int[((b*d*e^2 - a*c*f^2 + f*(2*b*d*e - b*c*f - a*d*f)*x)*(e + f*x)^(p -
 2))/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 1]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 3880

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Dist[(d*b^(m - 1)
)^(-1), Subst[Int[((-a + b*x)^((m - 1)/2)*(a + b*x)^((m - 1)/2 + n))/x, x], x, Csc[c + d*x]], x] /; FreeQ[{a,
b, c, d, n}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int \cot (c+d x) (a+a \sec (c+d x))^{5/2} \, dx &=\frac {a^2 \operatorname {Subst}\left (\int \frac {(a+a x)^{3/2}}{x (-a+a x)} \, dx,x,\sec (c+d x)\right )}{d}\\ &=\frac {2 a^2 \sqrt {a+a \sec (c+d x)}}{d}+\frac {a \operatorname {Subst}\left (\int \frac {a^3+3 a^3 x}{x (-a+a x) \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{d}\\ &=\frac {2 a^2 \sqrt {a+a \sec (c+d x)}}{d}-\frac {a^3 \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{d}+\frac {\left (4 a^4\right ) \operatorname {Subst}\left (\int \frac {1}{(-a+a x) \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{d}\\ &=\frac {2 a^2 \sqrt {a+a \sec (c+d x)}}{d}-\frac {\left (2 a^2\right ) \operatorname {Subst}\left (\int \frac {1}{-1+\frac {x^2}{a}} \, dx,x,\sqrt {a+a \sec (c+d x)}\right )}{d}+\frac {\left (8 a^3\right ) \operatorname {Subst}\left (\int \frac {1}{-2 a+x^2} \, dx,x,\sqrt {a+a \sec (c+d x)}\right )}{d}\\ &=\frac {2 a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {a}}\right )}{d}-\frac {4 \sqrt {2} a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}+\frac {2 a^2 \sqrt {a+a \sec (c+d x)}}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.13, size = 83, normalized size = 0.87 \[ \frac {2 (a (\sec (c+d x)+1))^{5/2} \left (\sqrt {\sec (c+d x)+1}+\tanh ^{-1}\left (\sqrt {\sec (c+d x)+1}\right )-2 \sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {\sec (c+d x)+1}}{\sqrt {2}}\right )\right )}{d (\sec (c+d x)+1)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(2*(a*(1 + Sec[c + d*x]))^(5/2)*(ArcTanh[Sqrt[1 + Sec[c + d*x]]] - 2*Sqrt[2]*ArcTanh[Sqrt[1 + Sec[c + d*x]]/Sq
rt[2]] + Sqrt[1 + Sec[c + d*x]]))/(d*(1 + Sec[c + d*x])^(5/2))

________________________________________________________________________________________

fricas [A]  time = 0.60, size = 300, normalized size = 3.16 \[ \left [\frac {2 \, \sqrt {2} a^{\frac {5}{2}} \log \left (-\frac {2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) - 1}\right ) + a^{\frac {5}{2}} \log \left (-2 \, a \cos \left (d x + c\right ) - 2 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) - a\right ) + 2 \, a^{2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{d}, \frac {2 \, {\left (2 \, \sqrt {2} \sqrt {-a} a^{2} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{a \cos \left (d x + c\right ) + a}\right ) - \sqrt {-a} a^{2} \arctan \left (\frac {\sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{a \cos \left (d x + c\right ) + a}\right ) + a^{2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}\right )}}{d}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[(2*sqrt(2)*a^(5/2)*log(-(2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c) - 3*a*cos(d*x
 + c) - a)/(cos(d*x + c) - 1)) + a^(5/2)*log(-2*a*cos(d*x + c) - 2*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x +
 c))*cos(d*x + c) - a) + 2*a^2*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)))/d, 2*(2*sqrt(2)*sqrt(-a)*a^2*arctan(sq
rt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(a*cos(d*x + c) + a)) - sqrt(-a)*a^2*arcta
n(sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(a*cos(d*x + c) + a)) + a^2*sqrt((a*cos(d*x +
c) + a)/cos(d*x + c)))/d]

________________________________________________________________________________________

giac [A]  time = 1.03, size = 112, normalized size = 1.18 \[ -\frac {\sqrt {2} {\left (\frac {\sqrt {2} a \arctan \left (\frac {\sqrt {2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}{2 \, \sqrt {-a}}\right )}{\sqrt {-a}} - \frac {4 \, a \arctan \left (\frac {\sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}{\sqrt {-a}}\right )}{\sqrt {-a}} - \frac {2 \, a}{\sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}\right )} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

-sqrt(2)*(sqrt(2)*a*arctan(1/2*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/sqrt(-a) - 4*a*arctan(sqr
t(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/sqrt(-a) - 2*a/sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))*a^2*sgn(cos(d*x
 + c))/d

________________________________________________________________________________________

maple [A]  time = 1.01, size = 124, normalized size = 1.31 \[ -\frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right ) \sqrt {2}+4 \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {1}{\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )-2\right ) a^{2}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)*(a+a*sec(d*x+c))^(5/2),x)

[Out]

-1/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(-2*cos(d*x+c)/(1+co
s(d*x+c)))^(1/2)*2^(1/2))*2^(1/2)+4*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/(-2*cos(d*x+c)/(1+cos(d*x+c)
))^(1/2))-2)*a^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cot \left (d x + c\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^(5/2)*cot(d*x + c), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \mathrm {cot}\left (c+d\,x\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)*(a + a/cos(c + d*x))^(5/2),x)

[Out]

int(cot(c + d*x)*(a + a/cos(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+a*sec(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________